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SMALL-TIME EXPANSION OF WAVE MOTION GENERATED

BY A SUBMERGED SPHERE

UDC 535.59E. V. Pyatkina

A nonlinear problem of motion of a solid sphere near a free surface of an infinitely deep fluid is
considered. For the case of motion with a constant acceleration starting from rest, the solution is
studied using a small-time expansion. Expansion coefficients up to the fourth power inclusive are
found for the free surface elevation and for the force acting on the sphere. The solutions for linear
and nonlinear conditions on the free surface are compared.
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Introduction. The problem of motion of bodies under the surface of a heavy fluid has been studied by
many authors. An approximation for a body moving under the free surface by a velocity-potential singularity was
first proposed by Lamb [1] and was further used by Havelock in the problem of motion of a sphere in a deep fluid [2].
Wu and Taylor [3] considered the motion of a sphere using multipole expansion over the sphere surface. All the
above-mentioned solutions were obtained within the framework of the linear theory for the case of steady motion.
Tyvand and Miloh [4] considered the impulsively starting motion of a horizontally submerged cylinder commencing
from rest with constant velocity and acceleration in nonlinear formulation. Small-time expansion up to the third
order of the surface elevation was found [4] and the hydrodynamic force on the cylinder was also discussed. The
same problem was solved in [5] in the small-cylinder approximation. Waves excited in a two-layer fluid by a naturally
rising sphere were considered by Mindlin [6].

In the present work, we solve the nonlinear unsteady problem using the method of reducing the initial
Cauchy–Poisson problem to a system of integrodifferential equations on the free boundary. This method has been
previously used in studying the well-posedness of problems of motion of a fluid with free boundaries [7]. Using
this method, Makarenko [8] obtained and justified the dipole approximation for the problem of motion of a circular
cylinder below the free surface. In [9, 10], the unique solvability (local in time) of the unsteady problem of motion of
a submerged sphere was proved, and the method of its approximate modeling by a system of multipoles concentrated
in the center was described.

The main objective of the present work is to construct the small-time expansion of the free surface elevation
(with allowance for nonlinearity of boundary conditions) and the force acting on the sphere.

1. Formulation of the Problem. We consider the motion of a completely submerged sphere in an
infinitely deep inviscid incompressible fluid with a free surface from above. The gravitational acceleration g is
directed downward along the z axis, and the Ox1x2 plane coincides with the undisturbed free surface. A sphere
of radius R moves with a constant acceleration A. We choose |A| as a unit of acceleration and the distance H
from the undisturbed free surface to the sphere center at the initial time as a unit of spatial variables. Then,
the units of velocity, potential, time, and pressure are

√
|A|H, H

√
|A|H,

√
H/|A|, and ρ|A|H (ρ is the constant

density of the fluid), respectively. We introduce a dimensionless parameter — the Froude number Fr =
√
|A|/g.

The main dimensionless parameters of the problem are ε = R/H , the coordinates of the sphere center xc =
(a1t

2/2, a2t
2/2, a3t

2/2 − 1), time t, sphere velocity vc = (a1t, a2t, a3t), and acceleration a = (a1, a2, a3), |a| = 1.
The equation for the free surface Γ(t) has the form z = h(x, t), x = (x1, x2). The spatial variables x1, x2, and z

here are dimensionless.
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The Cauchy–Poisson problem for the dimensionless velocity potential Φ(x1, x2, z, t) has the form

∆Φ = 0 (−∞ < z < h(x, t), |x− xc| > ε),

ht + Φx1hx1 + Φx2hx2 = Φz, Φt + |∇Φ|2/2 + Fr−2h = 0 on Γ(t),

n · (∇Φ(x, z, t)− vc(t)) = 0 on sphere Sε, |∇Φ| → 0, h(x, t)→ 0 for |x|+ |z| → ∞,

h(x, 0) = h0(x), Φ(x, z, 0) = Φ0(x, z), ∆Φ0 = 0, n · (∇Φ0(x, z)− vc(0)) = 0,

where x = (x, z) and n is the unit vector of the normal to the sphere Sε.
2. Reduction to the Boundary. In the initial problem, the domain of definition of the sought function is

unknown. By introducing the auxiliary functions ϕ(x, t) = Φ(x, h(x, t), t) and ψ(x, t) = Φz(x, h(x, t), t), we divide
the Cauchy–Poisson problem into the Cauchy problem on the free surface and a mixed boundary-value problem for
the Laplace equation in the domain occupied by the fluid. The Cauchy problem is formulated with the help of the
conditions on the free surface [7]

ht = −∇ϕ∇h+ (1 + |∇h|2)ψ, ϕt = −|∇ϕ|2/2− Fr−2h+ (1 + |∇h|2)ψ2/2 (2.1)

and initial conditions

h(x, 0) = h0(x), ϕ(x, 0) = Φ0(x, h0(x)).

System (2.1) is closed by an integral equation obtained using the Green formula

4πΦ(x) =
∫
S

G(x,y)n · ∇Φ(y) dS −
∫
S

Φ(y)n · ∇G(x,y) dS.

Here y = (y, h(y)), y = (y1, y2), S = Γ(t) ∪ Sε, n is the normal to the boundary S, and G(x,y) is the Green
function of the external Neumann problem for a sphere [11]:

G(x,y) = 1/|x− y|+N(x,y),

N(x,y) =
ε

|x− xc||(x− xc)∗ − (y − xc)|
+

1
ε

ln
|x− xc||y − xc| − (x− xc,y − xc)

ε2 + |x− xc||(x− xc)∗ − (y − xc)| − (x− xc,y − xc)

[the asterisk indicates inversion (x − xc)∗ = ε2(x − xc)/|x − xc|2 of the point x with respect to the sphere Sε].
Since, by construction, we have n · ∇G(x,y)|Sε = 0, one of the integrals over the sphere surface vanishes, and the
other is the solution of the problem of sphere motion in an infinite fluid flow:

1
4π

∫
Sε

G(x,y)n · ∇Φ(y) dS =
ε3(vc,x− xc)

2 |x− xc|3
.

Then, integrals over the free surface only remain in the Green formula, i.e.,

4πΦ(x) =
∫

Γ(t)

G(x,y)n · ∇Φ(y) dS −
∫

Γ(t)

Φ(y)n · ∇G(x,y) dS − 2π
ε3(vc,x− xc)
|x− xc|3

.

We differentiate the resultant equality with respect to z and direct the point x to the free surface. Taking into
account the jump of the potential of the double layer, equal to −2πΦz, we obtain

2πψ(x, t) = −
∫
R2

h(x, t)− h(y, t)
|x− y|3

[(1 + |∇h|2)ψ −∇h∇ϕ] dy1 dy2

+
∫
R2

(x− y)∇ϕ(y, t)
|x− y|3

dy1 dy2 −
2πε3a3t

|x− xc|3
+ 6π

ε3(h(x, t)− a3t
2/2 + 1)

|x− xc|5
vc · (x− xc)

+
∫
R2

Nz(x,y)[(1 + |∇h|2)ψ −∇h∇ϕ] dy1 dy2 −
∫
R2

ν · ∇Nz(x,y)ϕ(y, t) dy1 dy2, (2.2)
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where x = (x, h(x, t)) and ν = (−hy1 ,−hy2 , 1). In the right side of Eq. (2.2), the first two integrals do not depend
explicitly on ε. They are also retained in (2.2) if the sphere radius equals zero, which yields an equation for the
problem of free waves. The integrated terms correspond to a dipole moving in an infinite fluid. The last two
integrals are responsible for the sphere–free surface interaction and vanish at ε = 0. Equations (2.1) and (2.2) form
a closed system. Its solution allows one to reconstruct the velocity potential of the fluid everywhere in the flow
region. Then, using the Cauchy–Lagrange integral, we find the pressure of the fluid on the moving sphere.

The function N(x,y) can be represented as a series in powers of ε:

N(x,y) =
ε

|x− xc(t)||y − xc(t)|
+

1
ε

∞∑
k=1

(−1)k

k

{ ∞∑
n=1

ε2n

|x− xc(t)|n|y − xc(t)|n
}k

+
∞∑
n=1

(−1)n
(2n− 1)!!
(n+ 1)!

{ ε

|x− xc(t)| |y − xc(t)|

}2n+1(
ε2 − 2(x− xc(t),y − xc(t))

)n

+
1
ε

∞∑
k=1

(−1)k

k

{ ∞∑
n=1

(−1)n
(2n− 1)!!
(n+ 1)!

( ε

|x− xc(t)| |y − xc(t)|

)n+1

×
(

1− (x− xc(t),y − xc(t))
|x− xc(t)| |y − xc(t)|

)n(
1− ε2

|x− xc(t)| |y − xc(t)|

)−2n}k
.

This series converges if ε2/|x − xc(t)| |y − xc(t)| < 1, where the points x are y are located on the free surface.
This condition means that the sphere during its motion should be completely submerged into the fluid. After
transformations, we obtain

N(x,y) =
1
2
ε3(x− xc,y − xc)
|x− xc|3|y − xc|3

− ε5

|x− xc|3|y − xc|3
+
∞∑
n=3

ε2n−1

|x− xc|n|y − xc|n
n∑
k=1

(−1)k

k

k!
i1! . . . in!

+
∞∑
n=2

n∑
k=0

(−1)n
(2n− 1)!!

(2n)!!
Ckn(−2)kε4n−2k+1 (x− xc,y − xc)k

|x− xc|2n+1|y − xc|2n+1

+
∞∑
i=4

[i/2]∑
k=1

(−1)k

k

k!
j2! . . . ji!

i∑
q=2

[ q−1
2 ]jq∑

m=0

Bk,i,m,j2,...,jiε
2i−2m−1 (x− xc,y − xc)m

|x− xc|i|y − xc|i

(i1 + 2i2 + . . . + nin = n, i1 + i2 + . . . + in = k, 2j2 + . . . + iji = i, and j2 + . . . + ji = k). Here Bk,i,m,j2,...,ji are
numerical coefficients

Bk,i,m,j2,...,ji =
min(m,0)∑

m2=max

(
0,m−

i∑
q=2,q 6=2

[ q−1
2 ]jq

) · · ·
min

(
m,[ i−1

2 ]ji

)
∑

mi−1=max

(
0,m−

i∑
q=2,q 6=i−1

[ q−1
2 ]jq

)A2,m2,j2

· · ·Ai−1,mi−1,ji−1Ai,m−m2−...−mi−1,ji ;

Ap,lp,jp = Ck1
jp
Ck2
jp−k1

· · ·Ck[(p−1)/2]

jp−k1−...−k[(p−1)/2]−1
a
jp−(k1+...+k[(p−1)/2])
p,0 ak1

p,1 · · · a
k[(p−1)/2]

p,[(p−1)/2];

k1 + 2k2 + . . .+ [(p− 1)/2]k[(p−1)/2] = lp, 0 6 lp 6 [(p− 1)/2]jp;

k1 + k2 + . . .+ k[(p−1)/2] 6 jp;

ap,j = (−1)j
p−j−1∑

max(1,j)

(−1)n
(2n− 1)!!
(n+ 1)!

Cp−j−n−1
n+p−j−2C

j
n;

i1, . . . , in, j2, . . . , ji, and k1, . . . , k[(p−1)/2] are integer nonnegative numbers, and [ν] is the integer part of the num-
ber ν.
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Substituting the resultant representation of the function N(x,y) in the form of a series in powers of ε into
the Green formula for the velocity potential, we may draw the following conclusion. Exact satisfaction of the
boundary condition on the sphere surface corresponds to the assumption that an infinite number of multipoles are
concentrated in the center of the sphere; the strength of the multipoles depends on the parameter ε, instantaneous
elevation of the free surface, and velocity potential of the fluid on it. The small value of the parameter ε implies
that the sphere is initially located rather far from the free surface. We seek the solution of the initial problem in two
approximate formulations. The first approximation is obtained by discarding terms of order ε5 and higher in the
kernel N(x,y) of the integral equation (2.2); the second approximation is obtained by discarding terms of order ε7

and higher. The first and second approximations are called dipole and modified dipole approximations, respectively
3. Derivation of Auxiliary Relations. Here, we derive relations valid for all approximations considered.

At the initial time, the fluid is at rest, and the initial conditions are h(x, 0) = 0 and ϕ(x, 0) = 0. The solution of
system (2.1), (2.2) is sought in the form of series in powers of t:

(h, ϕ, ψ) = (0, 0, ψ0) + t(h1, ϕ1, ψ1) + t2(h2, ϕ2, ψ2)/2 + t3(h3, ϕ3, ψ3)/3! + . . . .

Equations (2.1) yield recurrent formulas relating the expansion coefficients of unknown functions:

h1 = ψ0, h2 = ψ1, ϕ1 = ψ2
0/2, ϕ2 = −Fr−2ψ0 + ψ0ψ1;

for i > 2, we obtain
hi+2 = −

i−1∑
k=1

∇ϕk∇hi−k + ψi +
i∑

k=2

ψi−k

k−1∑
n=1

∇hn∇hk−n,

ϕi+1 = −1
2

i−1∑
k=1

∇ϕk∇ϕi−k − Fr−2hi +
1
2

i∑
k=0

ψkψi−k +
1
2

i∑
k=2

k−1∑
n=1

∇hn∇hk−n
i−k∑
m=1

ψmψi−k−m.

It is clear that the coefficients of expansion of the free surface elevation and velocity potential of the fluid in powers
of t are expressed via the expansion coefficients of the function ψ. The equations for ψi are derived by expanding
Eq. (2.2) in powers of t.

We introduce the following notation for integral operators:

A0ψ = − 1
2π

∫
R2

h(x, t)− h(y, t)
|x− y|3

(1 + |∇h(y, t)|2)ψ(y, t) dy1 dy2,

B0ϕ =
1

2π

∫
R2

(x− y) + (h(x, t)− h(y, t))∇h(y, t)
|x− y|3

∇ϕ(y, t) dy1 dy2,

Aεψ =
1

2π

∫
R2

Nz(x,y)(1 + |∇h(y, t)|2)ψ(y, t) dy1 dy2,

Bεϕ = − 1
2π

∫
R2

Nz(x,y)∇h(y, t)∇ϕ(y, t) dy1 dy2 −
1

2π

∫
R2

ν · ∇Nz(x,y)ϕ(y, t) dy1 dy2.

We designate the integrated terms of Eq. (2.2) as

wdip = − ε3a3t

|x− xc|3
+ 3

ε3(h(x, t)− a3t
2/2 + 1)

|x− xc|5
vc · (x− xc).

We rewrite the equation for the normal derivative using the new notation:

ψ = A0ψ +B0ϕ+ wdip +Aεψ +Bεϕ. (3.1)

Note, the function N(x,y) has the third order of smallness in ε; therefore, the operators Aε and Bε are quantities
of the same order. With allowance for expansion of h in powers of t, the integral operators can be represented in
the form of the series

A0 = tA
(1)
0 +

t2

2
A

(2)
0 +

t3

6
A

(3)
0 +

t4

24
A

(4)
0 + . . . , B0 = B

(0)
0 +

t2

2
B

(2)
0 +

t4

24
B

(4)
0 +

t5

120
B

(5)
0 + . . . ,

Aε = A(0)
ε +

t2

2
A(2)
ε +

t4

24
A(4)
ε +

t5

120
A(5)
ε + . . . , Bε = B(0)

ε +
t2

2
B(2)
ε +

t3

6
B(3)
ε + . . . .
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The absence of terms of order t and t3 in the above formulas is explained by the quadratic dependence of the
coordinates of the sphere center on time. The expansion of the function wdip contains only odd powers of t, and the
operators with the subscript ε are determined by the kernel N(x,y) and are different in different approximations.

The functions ψi satisfy the integral equations obtained from Eq. (3.1) by equating coefficients at identical
powers of t:

(I −A(0)
ε )ψi = fi (i = 0, 1, 2, . . .). (3.2)

The right sides fi have the form

f0 = 0, f1 = w
(1)
dip +A

(1)
0 ψ0, f2 = A

(2)
0 ψ0 +A(2)

ε ψ0 + 2A(1)
0 ψ1,

f3 = w
(3)
dip +B

(0)
0 ϕ3 +B(0)

ε ϕ3 + 3A(1)
0 ψ2 +A

(3)
0 ψ0 + 3A(2)

0 ψ1 + 3A(2)
ε ψ1,

f4 = B
(0)
0 ϕ4 +B(0)

ε ϕ4 + 4A(1)
0 ψ3 + 6A(2)

0 ψ2 + 4A(3)
0 ψ1 + 6A(2)

ε ψ2 +A(3)
ε ψ1 +A(4)

ε ψ0,

f5 = w
(5)
dip +B

(0)
0 ϕ5 + 10B(2)

0 ϕ3 +B(0)
ε ϕ5 + 10B(2)

ε ϕ3 + 5A(1)
0 ψ4 + 10A(2)

0 ψ3 + 10A(3)
0 ψ2 + 5A(4)

0 ψ1

+ 10A(2)
ε ψ3 + 5A(4)

ε ψ1 +A
(5)
0 ψ0 +A(5)

ε ψ0, . . . .

4. Dipole Approximation. In this subsection, we seek the solution of system (2.1), (2.2) with accuracy
to ε5. This is called the dipole approximation, since the sphere is modeled by a dipole moving with a velocity vc in
an infinite fluid. In the dipole approximation, we have

N(x,y) =
1
2
ε3(x− xc(t),y − xc(t))
|x− xc(t)|3|y − xc(t)|3

.

In this case, the operator A(0)
ε ψi has the form

A(0)
ε ψi =

1
4π

ε3

(x2 + 1)3/2

∫
R2

ψi(y)
(y2 + 1)3/2

dy1 dy2 −
3

4π
ε3x1

(x2 + 1)5/2

∫
R2

y1ψi(y)
(y2 + 1)3/2

dy1 dy2

− 3
4π

ε3x2

(x2 + 1)5/2

∫
R2

y2ψi(y)
(y2 + 1)3/2

dy1 dy2 −
3

4π
ε3

(x2 + 1)5/2

∫
R2

ψi(y)
(y2 + 1)3/2

dy1 dy2. (4.1)

The convergence of the Neumann series for the operator A(0)
ε for small ε was established in [12]. Hence, if the right

side of the integral equation (3.2), where the operator A(0)
ε ψi is determined by formula (4.1), equals zero, then the

only solution of this equation also equals zero. Since ψ0 = 0, the operator is A(1)
0 = 0, and the right side of the

equation for ψ2 is also equal to zero. Then, we have ψ2 = 0; hence, A(3)
0 = 0 and ψ4 = 0.

The right side of Eq. (3.2) for ψ1 remains unchanged for all approximations in ε:

f1 = − ε3a3

(x2 + 1)3/2
+

3ε3(a1x1 + a2x2 + a3)
(x2 + 1)5/2

.

Discarding terms of order ε6 in the solution of the integral equation for ψ1, we obtain

ψ1(x) = − ε3a3

(x2 + 1)3/2
+

3ε3(a1x1 + a2x2 + a3)
(x2 + 1)5/2

.

The solution for ψ1, as the right side of Eq. (3.2), has the third order of smallness in terms of ε. Thus, the operator
A

(0)
ε ψ1 is of order ε6, and finally, the solution of Eq. (3.2), within the accepted accuracy, is equal to its right side.

In the dipole approximation, this is valid for all ψi.
The right side of Eq. (3.2) for ψ3 is determined by the formula

f3 = w
(3)
dip +B

(0)
0 ϕ3,
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since A(1)
0 = A

(3)
0 = 0, and the remaining terms in f3 are discarded because they have the sixth order of smallness

in terms of ε. Thus, we obtain

f3 = − 9ε3

(x2 + 1)5/2
− 18ε3a3

a1x1 + a2x2 + a3

(x2 + 1)5/2

+ 45ε3 (a1x1 + a2x2 + a3)2

(x2 + 1)7/2
+

1
2π

∫
R2

(x− y) · ∇ϕ3(y)
|x− y|3

dy1 dy2.

The integral in the last formula arises because of the operator B(0)
0 ϕ3. In this approximation, the nonlinear terms

in the free-surface conditions do not contribute to the solution. Therefore, we have

ϕ3(x) = Fr−2 ε3a3

(x2 + 1)3/2
− Fr−2 3ε3(a1x1 + a2x2 + a3)

(x2 + 1)5/2
.

To calculate B(0)
0 ϕ3, we use the Fourier transform for the Riesz integral operator

Ru(x) =
1

2π

∫
R2

(x− y)u(y)
|x− y|3

dy1 dy2 [u = (u1, u2)],

for which the following formula is valid: R̂u(ξ) = i sign ξ û(ξ). Here ξ = (ξ1, ξ2) and û(ξ) = (û1(ξ), û1(ξ)); the
vector is sign ξ = 0 for ξ = 0 or sign ξ = ξ/|ξ| otherwise. We assume that u1 = ϕ3y1 and u2 = ϕ3y2 . The Fourier
transform of the function B

(0)
0 ϕ3 has the form

̂
B

(0)
0 ϕ3(ξ) = Fr−2ε3e−|ξ|(ia3|ξ|2 − a1|ξ|ξ1 − a2|ξ|ξ2).

Using the inverse Fourier transform, we obtain

1
2π

∫
R2

(x− y) · ∇ϕ3(y)
|x− y|3

dy1 dy2 = 3Fr−2ε3 a1x1 + a2x2 + 3a3

(x2 + 1)5/2
− 15Fr−2ε3 a1x1 + a2x2 + a3

(x2 + 1)7/2
.

Then, we have

ψ3(x) = 3Fr−2 ε3 a1x1 + a2x2 + 3a3

(x2 + 1)5/2
− 15Fr−2 ε3 a1x1 + a2x2 + a3

(x2 + 1)7/2

− 9ε3

(x2 + 1)5/2
− 18ε3a3

a1x1 + a2x2 + a3

(x2 + 1)5/2
+ 45ε3 (a1x1 + a2x2 + a3)2

(x2 + 1)7/2
.

As a result, we obtain the free-surface elevation in the dipole approximation

h(x, t) = t2
3
2
ε3 a1x1 + a2x2 + a3(2− x2)

(x2 + 1)5/2
− t4 3

8
ε3 1

(x2 + 1)5/2

− t4 3
4
ε3 a3

a1x1 + a2x2 + a3

(x2 + 1)5/2
+ t4

15
8
ε3 (a1x1 + a2x2 + a3)2

(x2 + 1)7/2

+Fr−2 t4
1
8
ε3 a1x1 + a2x2 + 3a3

(x2 + 1)5/2
− Fr−2 t4

5
8
ε3 a1x1 + a2x2 + a3

(x2 + 1)7/2
+O(t6).

Figure 1 shows the surface of the fluid in the case of horizontal motion of the sphere along the x1 axis.
The sphere of radius ε = 0.5 moves with an acceleration |A| = g/4. At the initial time, the free surface is the
z = 0 plane. The motion of the sphere is considered until the time t = 1; per dimensionless time unit, the sphere
passes a distance equal to half of its initial depth H. For the slow acceleration of the sphere considered, two first
ridges of the wave wake are formed during the time period mentioned.

5. Modified Dipole Approximation. To obtain a system of equations of the modified dipole approxi-
mation, we make the following substitution in (2.2):

N(x,y) =
1
2
ε3(x− xc(t),y − xc(t))
|x− xc(t)|3|y − xc(t)|3

− 1
3

ε5

|x− xc(t)|3|y − xc(t)|3
+
ε5(x− xc(t),y − xc(t))2

|x− xc(t)|5|y − xc(t)|5
.
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Fig. 1. Free surface in the case of horizontal motion of the sphere at different dimensionless times:

t = 0.25 (a), 0.5 (b), 0.75 (c), and 1.0 (d).

In this case, in the solution, we neglect terms of the seventh and higher orders in ε. In this approximation, the
operator A(0)

ε ψi has the form

A(0)
ε ψi =

1
4π

ε3

(x2 + 1)3/2

∫
R2

ψi(y)
(y2 + 1)3/2

dy1 dy2 −
3

4π
ε3

(x2 + 1)5/2

∫
R2

(1 + x · y)ψi(y)
(y2 + 1)3/2

dy1 dy2

− 1
π

ε5

(x2 + 1)5/2

∫
R2

(1 + x · y)ψi
(y2 + 1)5/2

dy1 dy2 +
5

2π
ε5

(x2 + 1)7/2

∫
R2

(1 + x · y)2ψi
(y2 + 1)5/2

dy1 dy2

− 1
2π

ε5

(x2 + 1)5/2

∫
R2

ψi(y)
(y2 + 1)3/2

dy1 dy2.

As in the case of the dipole approximation, if the right side of Eq. (3.2) equals zero, then its only solution is also
zero. Therefore, we have ψ0 = ψ2 = ψ4 = 0 and, similar to the previous approximation, A(1)

0 = A
(3)
0 = 0. The

function

ψ1(x) = − ε3a3

(x2 + 1)3/2
+

3ε3(a1x1 + a2x2 + a3)
(x2 + 1)5/2

− 3
16
ε6 a1x1 + a2x2 + 2a3

(x2 + 1)5/2
+

1
8
ε6 a3

(x2 + 1)3/2

is the solution of Eq. (3.2) for ψ1 in the modified dipole approximation. In this solution, we discarded terms of the
eighth and higher orders in ε. Terms of the sixth order in ε in ψ1(x) appear because of the operator A(0)

ε ψi. Thus,
in this approximation, the sphere is simulated by a dipole whose strength is a sum of two terms. The first term if
the strength of the classical dipole, and the second term is the strength of the induced dipole, which characterizes
the interaction of the sphere and the free surface. Since the initial conditions of the problem are zero, the solution
has the order ε3. Being a functional of the instantaneous elevation of the free surface and velocity potential on the
latter, the strength of the induced dipole is a quantity of order ε6.
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The main difficulties in solving the equation for the third coefficient in the expansion of the function ψ arise
because of the presence of the terms B(0)

0 ϕ3 and A(2)
0 ψ1 in the right side of f3. The modified dipole approximation

takes into account the nonlinear terms of the conditions on the free surface (quantities without the factor Fr−2):

ϕ3(x) = Fr−2 ε3a3

(x2 + 1)3/2
− 3Fr−2ε3 a1x1 + a2x2 + a3

(x2 + 1)5/2
+ Fr−2 3

16
ε6 a1x1 + a2x2 + 2a3

(x2 + 1)5/2

− Fr−2 1
8
ε6 a3

(x2 + 1)3/2
+
(
− ε3a3

(x2 + 1)3/2
+ 3ε3 a1x1 + a2x2 + a3

(x2 + 1)5/2

)2

.

The Fourier transform of the integral

B
(0)
0 ϕ3 =

1
2π

∫
R2

(x− y) · ∇ϕ3(y)
((x1 − y1)2 + (x2 − y2)2)3/2

dy1 dy2,

as in the dipole approximation, is calculated using the Fourier transform of the Riesz operator and has the form

̂
B

(0)
0 ϕ3 = Fr−2ε3e−|ξ|(ia3|ξ|2 − a1|ξ|ξ1 − a2|ξ|ξ2)

+ Fr−2ε6e−|ξ|(ia1|ξ|ξ1 + ia2|ξ|ξ2 − a3|ξ|+ a3|ξ|2)/16 + i(ξ1/|ξ|)ψ̂2
1x1

(ξ) + i(ξ2/|ξ|)ψ̂2
1x2

(ξ).

The Fourier transform of the term that appears because of the nonlinearity of the dynamic boundary condition,
has the form

i
ξ1
|ξ|

ψ̂2
1x1

(ξ) + i
ξ2
|ξ|

ψ̂2
1x2

(ξ) = ε6
(1

8
a2

3|ξ|3K2(|ξ|)− 1
8
ia3(a1ξ1 + a2ξ2)|ξ|3K2(|ξ|)

− 1
8
a2

3|ξ|4K3(|ξ|) +
3

64 · 2
|ξ|4K3(|ξ|)− 3

64 · 2
a2

3|ξ|4K3(|ξ|) +
3

64 · 2
a2

3|ξ|5K4(|ξ|)

− 3
64 · 2

(a1ξ1 + a2ξ2)2|ξ|3K2(|ξ|)− 6
64 · 2

a1a2|ξ|3ξ1ξ2K2(|ξ|) +
3
64
ia3(a1ξ1 + a2ξ2)|ξ|4K3(|ξ|)

)
.

Here Ki(z) are modified Bessel functions of the second kind of order i (or Macdonald cylindrical functions). The
result of action of the operator

A
(2)
0 ψ1 = − 1

2π

∫
R2

h2(x)− h2(y)
((x1 − y1)2 + (x2 − y2)2)3/2

ψ1(y) dy1 dy2

is also found using the Fourier transform:

̂
A

(2)
0 ψ1 = − 1

2π
|ξ|
∫
R2

ψ̂1(ξ − η)ψ̂1(η) dη1 dη2 +
1

2π

∫
R2

|ξ − η|ψ̂1(ξ − η)ψ̂1(η) dη1 dη2.

Taking into account that the convolution of the Fourier transforms of two functions yields the Fourier transform
for the product of these functions, we obtain

̂
A

(2)
0 ψ1 = −|ξ|ψ̂2

1(ξ) + ĝ(ξ),

where

g(x) = 3ε6a3
a1x1 + a2x2 + 3a3

(x2 + 1)4
− 33ε6a3

a1x1 + a2x2 + a3

(x2 + 1)5
− 9ε6 (a1x1 + a2x2 + a3)2

(x2 + 1)5
+ 45ε6 (a1x1 + a2x2 + a3)2

(x2 + 1)6
.

The calculations yield

|ξ|ψ̂2
1(ξ) = −i(ξ1/|ξ|)ψ̂2

1x1
(ξ)− i(ξ2/|ξ|)ψ̂2

1x2
(ξ).

To find the inverse Fourier transform for the functions ̂
B

(0)
0 ϕ3 and ̂

A
(2)
0 ψ1, we use the integral formula (see for-

mula 6.576.3 in [13])

F ((ν − λ+ µ+ 1)/2, (ν − λ− µ+ 1)/2; ν + 1;−a2)

=
2λ+1a−νΓ(1 + ν)

Γ((ν − λ+ µ+ 1)/2)Γ((ν − λ− µ+ 1)/2)

∞∫
0

x−λKµ(x)Jν(ax) dx,
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where ν − λ+ 1 > |µ|, Γ(z) is the gamma-function, and Jν(z) is the Bessel function. Because of the presence of the

Macdonald functions in the expressions for ̂B(0)
0 ϕ3 and ̂

A
(2)
0 ψ1, the right side of the equation for ψ3 and, hence, the

solution itself are expressed via hypergeometric functions.
Thus, we obtain the time evolution of the free surface in the modified dipole approximation with an accuracy

to t6:

h(x, t) = t2
(3

2
ε3 a1x1 + a2x2 + a3(2− x2)

(x2 + 1)5/2
− 3

32
ε6 a1x1 + a2x2 + 2a3

(x2 + 1)5/2
+

1
16
ε6 a3

(x2 + 1)3/2

)

− t4 3
8
ε3 1

(x2 + 1)5/2
− t4 3

4
ε3 a3

a1x1 + a2x2 + a3

(x2 + 1)5/2
+ t4

15
8
ε3 (a1x1 + a2x2 + a3)2

(x2 + 1)7/2

+ Fr−2t4
1
8
ε3 a1x1 + a2x2 + 3a3

(x2 + 1)5/2
− Fr−2t4

5
8
ε3 a1x1 + a2x2 + a3

(x2 + 1)7/2
+
t4

24
ε6 18a2

3 − 7Fr−2a3

16(x2 + 1)3/2

+
t4

24
ε6 9(1− a2

3)
16(x2 + 1)5/2

+
t4

8
ε6Fr−2 a1x1 + a2x2 + a3

8(x2 + 1)5/2
− t4

24
ε6 45(a1x1 + a2x2 + a3)2

16(x2 + 1)7/2

− t
4

24
ε6 45a3(a1x1 + a2x2 + a3)

16(x2 + 1)7/2
+
t4

24
Fr−2ε6 15(a1x1 + a2x2 + a3)

16(x2 + 1)7/2

+
t4

24
ε6π
{
− a2

3

15
8
F
(3

2
,

7
2

; 1;−x2
)

+
105
128

(19a2
3 − 3)F

(3
2
,

9
2

; 1;−x2
)

− 3
64
a2

3

945
2
F
(3

2
,

11
2

; 1;−x2
)

+
315
16

a3(a1x1 + a2x2)F
(5

2
,

9
2

; 1;−x2
)

+
14,175

128
a3(a1x1 + a2x2)x2F

(7
2
,

11
2

; 3;−x2
)
− 3

64
(a1x1 + a2x2)2 14,175

16
F
(7

2
,

11
2

; 1;−x2
)

− 1
128

(a1x1 + a2x2)2x2 1,091,475
16

F
(9

2
,

13
2

; 3;−x2
)

− 1
64

(a1x1 + a2x2)2

8
x4 42,567,525

256
F
(11

2
,

15
2

; 5;−x2
)

− 3
64
a3(a1x1 + a2x2)

2835
2

F
(5

2
,

11
2

; 1;−x2
)

− 3
64
a3(a1x1 + a2x2)x2 155,925

16
F
(7

2
,

13
2

; 3;−x2
)

+
3

128
(1− a2

3)
315
2
F
(5

2
,

9
2

; 1;−x2
)

+
3

128
(1− a2

3)x2 14,175
16

F
(7

2
,

11
2

; 3;−x2
)}

+O(t6).

The expressions for the function h(x, t) obtained in the dipole and modified dipole approximations allows
us to compare the influence of the modified dipole and nonlinearity of the boundary conditions on the free-surface
elevation of the fluid.

Figure 2 shows the free-surface elevation for both approximations at the time when the sphere has passed a
distance equal to half of its initial depth. In the second approximation, the solutions of the problem with linear and
nonlinear conditions on the free surface are given. The sphere radius is ε = 0.6, and the acceleration is |A| = g. In
the case of vertical motion of the sphere, the greatest difference in the solutions for this value of ε is observed; the
difference is greater in the case of ascent than in the case of descent. In the case of horizontal motion of the sphere,
the difference in the solutions is minimum.

6. Force Acting on the Sphere. We calculate the force acting on the sphere in the dipole approximation.
The pressure in the fluid is found using the Cauchy–Lagrange integral:

p(x, z, t) = −Φt(x, z, t)− |∇Φ(x, z, t)|2/2− Fr−2z.
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Fig. 2. Free surface in the case of vertical ascent of the sphere: the solid curve refers to the nonlinear
modified dipole approximation, the dashed curve to the linear modified dipole approximation, and
the dot-and-dashed curve to the dipole approximation.

The force acting on the sphere is determined by the formula

R = −
∫
Sε

pn dS,

where n is the external normal of the sphere. As the solution of system (2.1), (2.2), we seek the velocity potential,
the pressure in the fluid, and the force R in the form of series in t

(Φ, p,R) = (Φ0, p0,R0) + t(Φ1, p1,R1) + (t2/2)(Φ2, p2,R2) + (t3/3!)(Φ3, p3,R3) + . . . ,

where
Ri = −

∫
Sε

pin dS.

Using the Cauchy–Lagrange integral, we obtain the following recurrent relations:

p0(x, z) = −Φ1(x, z)− Fr−2z, p1(x, z) = −Φ2(x, z), p2(x, z) = −Φ3(x, z)− |∇Φ1(x, z)|2,

p3(x, z) = −Φ4(x, z)− 3∇Φ1(x, z) · ∇Φ2(x, z),
(6.1)

p4(x, z) = −Φ3(x, z)−∇Φ1(x, z) · ∇Φ3(x, z)− |∇Φ2(x, z)|2,

p5(x, z) = −Φ6(x, z)− 10∇Φ2(x, z) · ∇Φ3(x, z)− 5∇Φ1(x, z) · ∇Φ4(x, z), . . . .

Using the expressions for h, ϕ, and ψ (see Sec. 4), we obtain Φ0 = Φ2 = Φ4 = 0. Then, formulas (6.1) yield
p1 = p3 = p5 = 0. Hence, we obtain R1 = R3 = R5 = 0. The coefficients R0, R2, and R4 of the force expansion
are found by integration. For convenience of integration over the body surface, we pass to spherical coordinates
with the origin at the center of the moving sphere:

x1 = ε cosα cosβ + a1t
2/2, x2 = ε cosα sinβ + a2t

2/2, z = ε sinα− 1 + a3t
2/2,

−π/2 6 α 6 π/2, 0 6 β 6 2π.

We have

R0 = −
∫
Sε

p0n dS = −
2π∫
0

π/2∫
−π/2

p̃0(ε, α, β, t)(cosα cosβ, cosα sinβ, sinα)ε2 cosαdα dβ.

Note, the pressure p0 on the sphere surface depends on time, since the sphere leaves its initial position while moving.
Hence, the vector R0 is also time-dependent and can be expanded into a power series in t; this is a series in even
powers, since the sphere-center coordinates depend quadratically on time:

R0 = R00 + t2R02 + t4R04 + . . . .
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Fig. 3. Force directed oppositely to acceleration of the sphere versus time (a) and cross section
(x2 = 0) of the fluid surface at the time t = 0.8661 (b) for A = 0.25g.

Analogously, we obtain

R2 = R22 + t2R24 + . . . , R4 = R44 + t2R46 + . . . .

The expansion of the force acting on the sphere in powers of t has the form

R = R00 + (R02 +R22/2)t2 + (R04 +R24/2 +R44/24)t4

+ (R6/6! +R06 +R26/2 +R46/24)t6 + (R7/7!)t7 + . . . .

Integration over the sphere yields

R = FA − 2πε3a/3 + F ,

where FA is the buoyancy force and 2πε3a/3 is the force acting on the sphere moving with an acceleration a in an
infinite fluid. The term F = (F1, F2, F3) is responsible for the wave load has the order ε6:

F1 = πa1ε
6/12− t2πa1ε

6(Fr−2 − 3a3)/8 + t4πa1ε
6(2Fr−4 − 15Fr−2a3 + 75a2

3)/96 + . . . ,

F2 = πa2ε
6/12− t2πa2ε

6(Fr−2 − 3a3)/8 + t4πa2ε
6(2Fr−4 − 15Fr−2a3 + 75a2

3)/96 + . . . ,

F3 = πa3ε
6/6 + t2πε6(−1 + 5a2

3)/8 + t4πε6(15Fr−2 + 2(−6 + Fr−4)a3 − 33Fr−2a2
3 + 48a3

3)/48 + . . . .

In the case of horizontal motion with slow acceleration of the sphere, the force directed oppositely to the
motion depends on time nonmonotonically. The time when the force reaches an extremum (Fig. 3a) corresponds to
the time when the second hump is formed on the free surface (see Fig. 1d). The cross section of the free surface by
the vertical plane of symmetry is shown in Fig. 3b. In the case of fast horizontal motion, the wave load increases
monotonically with time.

Thus, a small-time expansion of the free surface elevation is found in the case of uniformly accelerated
motion of the sphere starting from rest in the dipole and modified dipole approximations. An expression for the
force acting on the sphere is also obtained in the dipole approximation. The method used to reduce the initial
problem to a system of integrodifferential boundary equations allows obtaining the solution of the problem with
nonlinear conditions on the free surface.
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discussion of results.
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